Building Bridges Geometry final Project

Popsicle stick Bridge

In this activity, you will create and then test a popsicle stick bridge to specifications and then your bridge will be tested. This activity can be done in groups or alone.

Materials needed:

- *100 Popscicle sticks per group
- *Elmers white glue
- *Truss blueprints

Written requirements:

Explain the geometric attributes of your bridge: Parallel lines, perpendicular sides, sides that are horizontal, verticle and diagonal. Show any right angles and lines of symmetry.

Building a Popsicle-Stick Bridge

The goal: to build the strongest possible bridge to take a matchbox car, using wooden popsicle sticks.

Constraints:

- The bridge must span a 55cm gap
- No more than 100 popsicle sticks may be used
- · The sticks may not be cut
- · Only white glue may be used
- Construction paper may be used for the deck only
- The test load is applied to a 4cm-wide section at the top of the arch.

The test jig looks like this:

(Well-built bridges can support over 200kg - the weight of two adults)

Truss options:

Warren

Howe

Pratt

Step One: Brainstorming

Discuss with your group how you think the bridge should be constructed in order to support the most weight.

- 1) Write down some of your ideas, these may include insight into...
 - Structurally strongest geometric shapes for the simply supported bridge
 - How you plan to construct your bridge and why
 - How you plan to deal with the limitations of the load fixture, i.e. that a 4" x 1" metal
 plate must be able to approach your bridge from above and apply downward force at
 the mid-span wherever it touches. Hint: You want the load to distribute itself well
 onto significant structural members you have designed

Make a Prediction:		

Write down your prediction for the maximum weight your bridge will hold in the box below.

_____ pounds (lbs)

Sketch your bridge blueprints

Build your bridge:

Once you have decided on a design, construct your bridge. Keep in mind the rules:

Your bridge...

- A. Must be made with only the materials provided
- B. Must rest freely on supports that span 55 cm
- c. Must provide top supports to allow for weights to be placed on top to test the load.
- D. Written requirements must be completed
- E. Project must be labeled clearly and application form completed.
- F. Presentation to class...PRACTICE!

Grading:

Grades will be broken down into three categories: strength, workmanship, and presentation.

- Strength [35 points]: Points are awarded to teams based on how much weight their bridge carries prior to failure.
- Workmanship [10 points]: Points are awarded to teams based on the degree to which their bridge appears to be the professional-looking and shows a high level of craftsmanship.
- Presentation [15 points]: Points are awarded to teams based on a presentation of their bridge to the class. Students must address the questions listed below in a creative and professional manner.
- 4. Written requirements (15 points): See written guidelines above

Finally... It's time to test your bridges!!!